如果关掉互联网,区块链如何生存?

[复制链接]
8437 |0
发表于 2019-11-12 21:16:06 | 显示全部楼层 |阅读模式
来源:链闻
撰文:潘致雄

区块链技术,特别是以BTC为首的密码货币,有一个核心特点就是「去中心化」,这可以避免单一节点故障带来的问题。
不过,基本上现在所有BTC网络中的交易信息和账本数据都是通过「互联网 Internet」进行传输,这就是说,要经过互联网服务提供商(ISP),也就意味着, ISP 是可以阻止或监控用户访问的某些网站和服务。一个类似的例子是,比如在美国,使用点对点下载工具 BitTorrent 下载某些盗版资源,有可能会收到来自 ISP 和版权方的警告信。
已经有些团队在进行各种尝试改变这一现状。比如,BTC技术开发公司 Blockstream 在尝试通过卫星将BTC区块数据同步至太空,这样,用户可以在卫星覆盖区域使用信号接收器接入BTC网络,哪怕自家的网线断了。此外,「智能合约之父」Nick Szabo 与他的同事 Elaine Ou早在 2017 年就提出过利用无线电通讯进行BTC转账的方案,后来硬件钱包开发商 MaximineKite的联合创始人 Rodolfo Novak 和 OpenBazaar 联合创始人 Sam Patterson 成功使用无线电通讯完成BTC转账。

2019 年 2 月份,Rodolfo Novak 和 Sam Patterson 宣布使用无线电通讯完成BTC转账
Rodolfo Novak 还使用无线电通讯完成了BTC闪电网络的转账——使用无线电传输不仅可以避开 ISP 这种中心化的服务,而且还可能比通过光纤或者宽带传输更快,接近光速。
此外,还有有一些项目,在试图搭建可以独立于互联网、在物理环境中实现「点对点网络」或更高级的「网状网络 Mesh」技术,解决一些特定场景下的特定网络传输问题。这类产品在无形中与区块链的「去中心化」理念有所协同,并共同演进。
本文希望介绍其中的三个标志性项目:Open GardengoTenna Helium,以及苹果公司在这方面的实际应用。
这是一个值得关注的技术方向。「智能合约之父」Nick Szabo 曾经对 Blockstream 的卫星项目评论到:「我希望这将会是一个趋势:区块链这种全球化的技术终于可以使用真正的无线电广播传输,而不是利用互联网传输,这样才会绕开互联网这个瓶颈。」
从某种视角来看,当一个分布式网络实现了绕开互联网也能生存,才算真正实现了去中心化。

Open Garden 和 FireChat Open Garden 项目起始于 2011 年的加州,其业务和产品线的重点发生过多次的调整。Open Garden 试图通过手机等设备的蓝牙和 Wi-Fi,建立物理环境中的点对点网络。
一个典型的应用案例是,在一个公司的办公室,当每个人的设备都运行 Open Garden 软件时,那么每一台设备都会通过蓝牙或 Wi-Fi 的方式互相连接或者中继连接,即设备 A 通过设备 B 连接至设备 C,所以这也可以称为「网状网络(Mesh network)」。如果接入这个网状网络的设备之中,有的设备(比如说手机)无法接入互联网,而有的设备(比如说 PC)可以接入互联网,那这个物理网状网络就可以把接入互联网的能力进行共享:手机蓝牙通过几台设备跳转后连接至 PC,从而获得了互联网访问能力。
这可能会带来一个问题,用户不一定有意愿共享其互联网接入的能力。所以 Open Garden 也在今年 4 月正式上线了有区块链特色的代币激励机制,共享互联网接入能力的节点可以赚取由节点定价的「OG」代币,而使用节点流量数据的设备需要付出对应的「OG」代币。
目前可以赚取 OG 代币的节点需要使用 Open Garden 的专用 Wi-Fi 共享设备,售价 30 美元。
有意思的是,代币 OG 是通过「恒星协议 Stellar」发行的,而且现在也只在恒星的去中心化交易所中可以交易 。OG 还没有被任何行情网站收录,对于一个超过 8 年的项目来说,算是相当冷门和低调了。
FireChat 是 Open Garden 发布的专门用来在「无互联网」状态下的聊天工具。其底层技术类似于 Open Garden,通过蓝牙和 Wi-Fi 建立物理环境中的网状网络,用来完成「聊天」这个特殊的功能。
举个例子,假设某地发生了自然灾害,导致所有网络连接被切断,这时候是没法用微信或者任何中心化服务的,虽然还可以使用卫星电话接入网络,但其成本不是普通用户可以负担的。如果这时候每个人都安装了 FireChat 并运行起来,每个设备都是一个收发数据的节点,每个参与者都可以无形之中增加整个 Mesh 网络的覆盖度和健壮性,最终达成无网环境中的聊天。
在 FireChat 官网的介绍中,还提到了一些特定的适用场景,比如说网络封锁、人群拥挤的音乐节、人群密集的场所等,都是该应用理想的使用场景。
在 2014 年的一篇媒体报道中提到,由于伊拉克有着大规模的网络封锁和监控,伊拉克的用户开始寻找通讯工具的替代品。由于 FireChat 不需要互联网连接的特性,获得了很多的用户。该文章还提到了当时的 FireChat 的加密和安全措施并不完善,所以可能会有安全隐患。不过现在的 FireChat 已经包含了端到端加密的特性。

Open Garden 和 FireChat 基本资料,潘致雄整理

goTenna、txTenna 和 Lot49

总部位于纽约的 goTenna 创立于 2012 年,共发布过两代的消费级产品:goTenna(第一代)和 goTenna Mesh (第二代),同时还有专业化的产品线 goTenna Pro 系列。相比 Open Garden 所采用的蓝牙和 Wi-Fi 的解决方案,goTenna 则更激进一些,因为还需要购买硬件设备才可以组建 Mesh 网络。其硬件产品一组两个,售价 179 美元,至今已销售超过 10 万台设备。

为了提高 Mesh 网络的传输距离,goTenna 采用自己的无线传输方案,空旷地区的传输距离可以超过 6 公里,城市内也能达到 1 公里左右。手机通过蓝牙和 goTenna 连接后,goTenna 可以让使用其组建 Mesh 网络中的用户,在没有互联网的情况下发送 1 对 1 消息、群组消息或共享地理位置。
goTenna 的产品定位和 Open Garden 很不一样,更适合传输距离更大的场景中,官方提到的场景包括户外旅游、国际旅行、紧急情况下的通讯、音乐节或嘉年华等人群拥挤的地方。
txTenna 是 goTenna Mesh 的一个特殊使用场景:在无网络情况下广播BTC转账数据。这套完整的解决方案包含了四方:用户、txTenna (和 goTenna Mesh)、Samourai Wallet 和 Blockstream 卫星。

假设某位用户附近没有 Wi-Fi 和移动信号,无法访问互联网,而用户的需求是将自己BTC转账请求数据发送至BTC网络,该用户可以进行如下操作:
[ol]
       
  • 需要先使用武士钱包 (Samourai Wallet) 发起转账申请;武士钱包是一款安卓平台上注重隐私特性的开源BTC钱包,goTenna 曾表示,未来会支持更多钱包。
           
  • 用户使用武士钱包签名BTC转账数据,并发送给 txTenna App。
           
  • txTenna 将武士钱包已签名的BTC转账请求的数据,通过蓝牙发送给 goTenna Mesh。
           
  • goTenna Mesh 将该笔数据广播至由 goTenna Mesh 组成的 Mesh 网络中的其他设备,只要有一台设备中的 txTenna 有互联网接入能力,则该笔转账数据就能广播至BTC网络。电脑也可以通过 goTenna Mesh 接入网状网络,然后通过 txTenna-python 脚本将转账数据同步至BTC网络。目前还该方案中有个限制,必须要发起转账申请的节点需要在 3 个跳转之内将数据发送至联网节点。
           
  • Blockstream 卫星是一个可选的部分。如果在这个 Mesh 网络中有节点和卫星数据接收器(一个长得像「锅」的设备)连接,那该 Mesh 网络也就可以在断网状态下获得全量BTC区块数据。因为接收 BlockStream 卫星信号的接收器可以将 Blockstream 卫星上的BTC全节点全部下载至本地,其实这本身就是一个互联网断网的状态下也能获得全量BTC数据的解决方案。
    [/ol]
    最近 goTenna 发布了名为「Lot49」协议的白皮书,该协议创新性的将BTC的闪电网络的小额支付功能,作为搭建物理 Mesh 网络的激励体系,创建一个可以脱离 ISP 的真正去中心化并健壮的通讯网络。
    像 goTenna Mesh 这类的网状网络,有一个比较大的问题,是如何激励节点能保持打开状态。节点保持打开状态可以增进网络覆盖度和健壮性。Lot49 把BTC闪电网络的小额支付功能增加到 Mesh 网络中,作为「接力节点 Relay Nodes」在帮助传输数据时就可以获得相应的激励。由于占用较少的带宽,所以加入支付功能也不会对整个 Mesh 网络造成影响。
    在搭建了 Mesh 网络后,这些接力节点就可以替用户将数据接力多次后发送到目标用户。不过,由于目前 goTenna Mesh 网络的吞吐量和硬件性能,所以主要的使用场景只有发送消息数据这类低带宽的数据。
    由于该协议的实现,需要基于BTC主网部署「施诺尔签名 Schnorr signature」和 BIP-118 提案,所以该协议还处于早期阶段。

    goTenna 和 txTenna 基本资料,潘致雄整理

    Helium

    Helium 是一个最近火热的项目,在 6 月获得了来自 MultiDAC 和联合广场风投(USV)总共 1500 万美元的融资。MultiDavinci 称 Helium 项目是他们目前为止最大规模的一次私人投资,而且预计将在未来几年持续投资于这一生态系统。
    Helium 网络的增长速度极快。Helium 团队三个月前正式发布网络,目前已经涵盖了美国 50 个州中的 45 个,涵盖城市数量超过400 个,网络覆盖的面积达 10 万平方英里。其创始人之一 Shawn Fanning 本身已经足够值得关注。这名 80 后企业家、程序员、天使投资人,在 1999 年的时候就已经做出了一款被写入互联网史和音乐史的产品:Napster,它与「电驴 eDonkey2000」被称为第一代的点对点网络,而且在那个年代都能获得近 8000 万的注册用户——请记住,当时全球接入互联网的用户也就 3 亿多。

    Shawn Fanning,Helium 创始人之一
    Napster 的功能是分享盗版的 MP3 音乐,而因此带来了许多的版权问题。由于当时的点对点网络还是需要中心化服务器的,所以也就导致了在 2001 年 7 月被法院强制关闭。虽然后来 Napster 被收购以及保留了品牌,但也没能再续辉煌。
    之后 Shawn Fanning 也有过几次的创业,包括曾经大红大紫过的私密好友社交  Path ,但最终也于 2018 年停止服务。
    其实早在 2013 年,Shawn Fanning 就与其他两人共同创立了 Helium ,那个时候区块链这个词才刚刚诞生,所以这个项目和区块链还没啥关系。
    一开始 Helium 尝试做的是物联网领域,提供各种传感器技术甚至是医疗机构的解决方案,在经过转型后,到了 2018 年下半年才给这个物联网平台加上了区块链和挖矿概念,也就是现在 Helium 的产品。
    用一句话来说,Helium 是个通过专有硬件设备驱动的区块链,用以提供物联网设备联网的点对点网络。
    Helium 试图通过区块链网络作为激励层和去中心化的基础设施,搭建一个物联网的网络。所以该项目的主打场景以物联网(IoT)为主,包括:森林火灾检测、宠物位置跟踪、自行车防盗、农业等。之前科技媒体 TechCrunch 还报道过 Helium 将与 Lime (共享单车和滑板服务)合作,共同测试并试图解决单车和滑板被盗的问题。
    其实在物联网领域,目前常用的通讯协议有 ZigBee、蓝牙或者 Wi-Fi,而它们的问题是传输距离比较有限,每家每户可能都需要一个专用收发设备。所以 Helium 采用的是专有的硬件和专有的无线传输协议以解决信号覆盖的问题,这台专用的硬件由 Helium 生产,取名为 Hotspot

    Hotspot

    其实可以把 Hotspot 理解成是一台 Helium  网络的矿机,但是这台矿机不是消耗算力资源挖矿。物联网设备可以通过 Hotspot 接入互联网,也正因为 Hotspot 提供了这种无线传输的区域覆盖能力,所以通过挖矿的这种形式给 Hotspot 持有者代币激励。

    在无线传输协议上,为了提高单设备的覆盖范围,Hotspot 采用的无线传输协议不是 Wi-Fi,而是 LongFi,这是一个在低于 1GHz 频段运行的开源协议,是普通 Wi-Fi 传输距离的 200 倍,而且是低频频带,意味着这些无线电波能够轻易穿过混凝土墙和地板,同时所需要的电量是蜂窝调制解调器(一般用在手机上)的千分之一。
    一台 Hotspot 就可以达到数平方公里的覆盖度,也就是说,只要 50 到 150 台就可以覆盖整个城市。Hotspot 的功耗也很低,平均运行功率 12 瓦,也就是普通 LED 灯泡的功耗,每天不到 0.3 度电。

    Helium 区块链在 Hotspot 背后的,就是 Helium 区块链了,所以也会有代币和共识机制等。
    Helium 采用了双代币机制,一个叫做 Helium,目的是奖励 Hoptspot 提供了区块验证和无线网络覆盖。另一个叫做 Data Credits,所有在网络中传输数据或者区块转账手续费都是用这个代币支付的,而且这个代币是通过转换 Helium 生成的,不可以交易,且绑定在单个用户上。Helium 区块链没有预挖,每月释放约 5 万个 Helium 代币,按比例分配给 Helium 官方和投资者(占比 35%)、Hotspot 基础设施(35%)和数据传输(30%)。

    在共识和挖矿机制中,也采用了比较复杂的混合方案,每年也会按照线性的方式调整分配比例。其初始分配方式为:

           
  • 「挑战者」,可分配 1% 的代币,网络会挑选随机的 Hotspot 节点验证覆盖度;
           
  • 「覆盖度证明」(Proof-of-Coverage),可分配 19% 的代币,当每台 Hotspot 验证相邻 Hotspot 覆盖度的时候,而且取决于直接参与 PoC 的频率;
           
  • 「见证人」,可分配 9% 的代币,成为见证人节点后,需要监控和汇报 PoC 的情况,所以可以获得代币奖励;
           
  • 「数据传输」,可分配 30% 的代币,根据节点传输数据的数量分配;
           
  • 「共识小组」,可分配 6% 的代币,所有节点都会根据 PoC 的情况评分后选举出最高分的节点作为共识小组成员,该小组成员会替整个 Helium 区块链验证交易数据并打包成区块后分发。


    总体而言,其经济模型是,Hotspot 硬件负责连接物联网设备,实现 LongFi 传输协议,实现低能耗低带宽高覆盖的网络;Helium 区块链负责激励和数据层的实现,通过合适的经济模型和共识机制增加网络节点的数量和可靠性,这两者的结合就是 Helium 对于物联网生态的布局方式。
    MultiDAC Capital 认为,虽然 Helium 网络始于 LongFi,但这样的部署也可以作为 Helium 在其他无线网络类型(LTE、5G 等)的发展蓝图,使得 Helium 网络能够通过 LongFi 在物联网领域产生与大型电信网络运营商进行不对称竞争的优势,也将推动 Helium 网络进军更高一级的市场,在更高带宽的产品上进行竞争。

    Helium 和 Hotspot 基本资料,潘致雄整理
    最近 Helium 项目还发布了开发者套件 SDK 的测试版,阐述了LongFi协议的信息,SDK开源并托管在GitHub上,提供了开发者文档和示例代码,以及告诉用户如何搭建自己的 Hotspot 设备等。

    苹果的「Find My」会是分布式网络的前哨吗?

    作为拥有最多移动设备用户的厂商之一,苹果其实已经有能力建立一个脱离于互联网的分布式网络了,比如 FireChat 就是利用 iPhone 的 Wi-Fi 和蓝牙建立的网状网络。早在 2013 年的 iOS 7 时代,苹果就提供了名为 MultipeerConnectivity 的框架,给开发者提供创建点对点网络的能力,基于这个点对点协议的基础设施,开发者就可以构建出分布式的网状网络,实现一些实际的应用场景。在今年 6 月的苹果全球开发者大会(WWDC)中,苹果还整合并发布了一个新的服务,尝试将物理环境中的蓝牙网络利用在了防盗领域。虽然现在这个服务还不能算是分布式网络,但可能在之后的发展中会成为一种特殊形式的分布式网络。
    其实很早之前,苹果就已经提供了手机被盗后的数据安全解决方案「查找我的 iPhone」(Find my iPhone)。当用户手机被盗之后,用户可以登录 iCloud 服务,然后锁定 iPhone,抹除数据甚至是追踪位置,只要这台手机再次联网就行。而且偷盗者无法通过任何软件手段将手机恢复出厂设置,除非获得 iCloud 账户和密码才行,所以也催生了手机被盗后用户经常会收到钓鱼短信和邮件可能会被盗取密码的事件。同时苹果还有个「查找朋友」的服务,提供类似于一群朋友在外旅游需要互相分享地理位置这样的场景,或者是家庭成员互相长期共享地理位置的场景。
    其实上述这两个服务的技术都是基于移动网络、Wi-Fi 和 GPS 等定位技术整合实现的。而今年,苹果不仅将「查找我的 iPhone」和「查找朋友」这两个服务进行了合并,而且还加入了第三方蓝牙作为「接力」,提供一个更完整的地理位置服务,并简化名称为「Find My」。
    具体如何实现的呢?以 MacBook 笔记本设备为例,假设电脑被盗或者遗失了。就算这台电脑是关机的状态下,还会定期发出加密的蓝牙信号,而且蓝牙信号数据是极度省电的,所以可以持续很久。任何一台 iPhone 都会成为中继设备,当附近只要有一台 iPhone 扫描到这个加密信号后,就会把这个包含地理位置的加密数据包上传至苹果服务器。苹果也没办法解密这个数据包的,只有丢失者才有解开这个数据包的密钥,然后就能获得这个具体的地理位置了。
    这其中如何做到安全和隐私的技术细节 Wired 在这篇文章有解释过:https://www.wired.com/story/apple-find-my-cryptography-bluetooth/。
    当然,这个服务可以理解为只是一种基于蓝牙和地理位置的应用场景,但是以苹果近 10 亿活跃 iPhone 用户数量来说,该服务可能只是一次简单的尝试。试想一下,现在仅支持一台其他设备接力蓝牙信号,之后的发展方向可能是会支持多台设备拾获蓝牙信号三角定位,或者多台 iPhone 之间使用蓝牙互相连接提供更准确的地理位置等等,毕竟 iPhone 设备在真实环境中的密度是远远超过 goTenna 的,而且苹果很早就准备好了无线点对点网络的基础设施,所以这类的场景其实都是可以通过苹果统一而封闭的系统实现的。
    巧合的是,苹果也曾经设想过通过 iPhone 实现 goTenna 这类产品的场景,这是近期才被美国媒体 The Information 公开的。
    苹果内部有过一个代号为 OGRS 的项目,该项目会采用 Intel 的芯片,试图发送与接收 900 MHz(与 goTenna 与 Helium 的采用的频率很接近)的无线电波,让手机在无蜂窝网络(2G、3G、4G、5G)覆盖的场景中也可以通过无线电波与其它地理位置相近手机进行通讯。该报道称该功能的研发目前已停止,但还是有可能会出现在未来的 iPhone 手机上。
    而在 9 月发布的 iPhone 11 系列中搭载的超宽频 UWB 和 U1 芯片可能是该技术的延续,通过该技术,可以实现室内的定位与位置感知,但苹果现阶段还未提供更多的细节,也许是 AR/VR 相关的技术储备,也可能是一种可以广泛使用的通讯协议。
    所以,如果有一天 iPhone 可以组成类似于 Helium 和 goTenna 那样的分布式网络,也没什么好惊讶的。
    看向未来 除以上的介绍之外,还有几个比较有意思的网状网络项目值得关注:

           
  • 一个是非盈利项目 NYC Mesh,尝试在纽约市建立一个无线网状网络,提供更廉价的互联网服务,Mozilla 也捐助过该项目;
           
  • 第二个是 RightMesh,该项目已经开发了 5 年时间,虽然愿景远大,希望为尚未接入互联网的用户提供网络服务,但还是被用户质疑进度缓慢,甚至他们的技术开发也遭遇了重构和改组;
           
  • 还有一个是 Locha Mesh 项目,这是一个来自于委内瑞拉的开源项目,允许用户的隐私信息和支付功能在没有互联网连接的状态下也可以发送和进行,目前已经开发了两个硬件原型,用户组建出网状网络后,可以将互联网接入能力进行共享。

    这些项目大多都支持了蓝牙协议,因为蓝牙作为一种通用无线协议,覆盖的用户数可能会更惊人,而早在 2017 年的时候,蓝牙联盟就发布了 Mesh SNT 技术的网络规范,可以将低功耗蓝牙技术应用到网状网络中,比如工业物联网领域。蓝牙联盟早就预见到了物联网可能会是一个巨大的趋势,Helium 则更早的看到了这种趋势,所以在 2013 年的时候就创业尝试,但最终还是因为定位和时机的原因没有成功。之后 Helium 在 2018 年卷土重来的时候,应该是学习到了区块链技术对于分布式网络的重要性,不仅可以以去中心化的形式进行价值转移,还可以植入合适的经济模型促进整个生态的发展。除了 Helium 之外,goTenna 和 OpenGarden 也在项目进行的数年之后再加入了区块链相关的技术和激励机制,尝试建立一个在物理环境中可以去中心化的网络传输基础设施。

    OpenGarden、goTenna 和 Helium 基本资料对比,潘致雄整理
    这可能是因为区块链概念可以帮助项目营销和融资,也可能真的是因为区块链才是分布式网络、网状网络、去中心化网络、物联网技术可以最终落地实现的最好伙伴。
    参考

           
  • 关于苹果:[https://www.wired.com/story/apple-find-my-cryptography-bluetooth/]
           
  • iPhone 各年销量:[https://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/]
           
  • [http://whitepaper.helium.com]
           
  • 伊拉克案例:[https://threatpost.com/research-shows-increase-in-internet-filtering-and-usage-of-firechat-app-in-iraq/107402/]
           
  • 全球接入网络用户数量:[https://www.internetworldstats.com/pr/edi008.htm]
           
  • goTenna 设备销量:[https://www.Davincidesk.com/gotenna-bitDAC-wallet-mesh-network
           
  • Lot49 白皮书:[https://global-mesh-labs.gitbook.io/lot49/]

    20191112201942_P447.jpg

    20191112201942_P447.jpg
  • 回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    热门版块
    快速回复 返回顶部 返回列表